(OFFICE)+09-568 9158, (ELTON) 016-923 0300, (ELVIN) 017-228 1581, (KEONG) 016-986 1586
/ SUSTAINABLE FUTURE /
Jardi Jaya Believes In Green & Clean Energy
SOLAR ENERGY
Efficient & Reliable
Solar power is energy from the sun that is converted into thermal or electrical energy.
Solar energy is the cleanest and most abundant renewable energy source available, and the U.S. has some of the richest solar resources in the world. Modern technology can harness this energy for a variety of uses, including generating electricity, providing light or a comfortable interior environment, and heating water for domestic, commercial, or industrial use.
The Malaysian solar market faces both challenges and opportunities; the industry is working to scale up the production of solar technology, and drive down manufacturing and installation costs.
There are several ways to harness solar energy: photovoltaics (also called solar electric), solar heating & cooling, concentrating solar power (typically built at utility-scale), and passive solar.
The first three are active solar systems, which use mechanical or electrical devices that convert the sun's heat or light to another form of usable energy. Passive solar buildings are designed and oriented to collect, store, and distribute the heat energy from sunlight to maintain the comfort of the occupants without the use of moving parts or electronics.
Solar energy is a flexible energy technology: solar power plants can be built as distributed generation (located at or near the point of use) or as a central-station, utility-scale solar power plant (similar to traditional power plants). Some utility-scale solar plants can store the energy they produce for use after the sun sets.
WIND ENERGY
A Sustainable Tomorrow
Wind power is the use of air flow through wind turbines to mechanically power generators for electric power. Wind power, as an alternative to burning fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation, consumes no water, and uses little land. The net effects on the environment are far less problematic than those of nonrenewable power sources.
Wind farms consist of many individual wind turbines which are connected to the electric power transmission network. Onshore wind is an inexpensive source of electric power, competitive with or in many places cheaper than coal or gas plants. Offshore wind is steadier and stronger than on land, and offshore farms have less visual impact, but construction and maintenance costs are considerably higher. Small onshore wind farms can feed some energy into the grid or provide electric power to isolated off-grid locations.
Wind power gives variable power which is very consistent from year to year but which has significant variation over shorter time scales. It is therefore used in conjunction with other electric power sources to give a reliable supply. As the proportion of wind power in a region increases, a need to upgrade the grid, and a lowered ability to supplant conventional production can occur. Power management techniques such as having excess capacity, geographically distributed turbines, dispatchable backing sources, sufficient hydroelectric power, exporting and importing power to neighboring areas, using vehicle-to-grid strategies or reducing demand when wind production is low, can in many cases overcome these problems. In addition, weather forecasting permits the electric power network to be readied for the predictable variations in production that occur.
RECYCLING
Prioritizing Optimization
Recycling is the process of converting waste materials into reusable materials and objects. It is an alternative to "conventional" waste disposal that can save material and help lower greenhouse gas emissions (compared to plastic production, for example). Recycling can prevent the waste of potentially useful materials and reduce the consumption of fresh raw materials, thereby reducing: energy usage, air pollution (from incineration) and water pollution (from landfilling).
Recycling is a key component of modern waste reduction and is the third component of the "Reduce, Reuse and Recycle" waste hierarchy.
There are some ISO standards related to recycling such as ISO 15270:2008 for plastics waste and ISO 14001:2004 for environmental management control of recycling practice.
Recyclable materials include many kinds of glass, paper and cardboard, metal, plastic, tires, textiles and electronics. The composting or other reuse of biodegradable waste—such as food or garden waste—is also considered recycling. Materials to be recycled are either brought to a collection centre or picked up from the curbside, then sorted, cleaned and reprocessed into new materials destined for manufacturing.
In the strictest sense, recycling of a material would produce a fresh supply of the same material—for example, used office paper would be converted into new office paper, or used polystyrene foam into new polystyrene. However, this is often difficult or too expensive (compared with producing the same product from raw materials or other sources), so "recycling" of many products or materials involves their reuse in producing different materials (for example, paperboard) instead. Another form of recycling is the salvage of certain materials from complex products, either due to their intrinsic value (such as lead from car batteries, or gold from circuit boards), or due to their hazardous nature (e.g., removal and reuse of mercury from thermometers and thermostats).